Interim Mindanao Electricity Market

Philippine Electricity Market Corporation April 2013

Introduction

Governance and Regulatory Framework

Registration and Membership

Market Operations

Settlement and Metering

Disputes and Penalties

Outline

Introduction

Governance and Regulatory Framework

Registration and Membership

Market Operations

Settlement and Metering

Disputes and Penalties

Background

DOE Roadmap for Mindanao

- In line with its roadmap to address the power supply shortage in Mindanao, DOE directed PEMC to study the kind of electricity market that can be established in Mindanao.
- A Mindanao Power Summit was held last April 2012 where Mindanao supply issues were discussed.

Public Consultations

• DOE presented its Roadmap for Mindanao in Cagayan De Oro on 22 October 2012 and in Davao City on 14 November 2012

Background

Department Circular No. DC2013-01-001

- On 9 January 2013 DOE issued DC2013-01-001 entitled "Directing the Philippine Electricity Market Corporation to Develop and Implement an Interim Mindanao Electricity Market (IMEM) as a Measure to Immediately Address the Power Supply Situation in Mindanao".
- DC2013-01-001 provided for the salient features of the IMEM

Inter-agency Coordination Meetings

- Meetings were held with NPC, PSALM, NEA, GMC, Transco, NGCP and other stakeholders
- Based on the inputs from various agencies, PEMC submitted the draft IMEM rules to the DOE on 25 March 2013

Features of Electricity

Electricity cannot be economically stored in large quantities.	 All electricity has to be generated when needed. Demand for electricity over the day is highly variable.
Physical flow of electricity cannot be traced.	 It is not physically possible to determine or even direct where the electricity generated by one power plant goes.
Transmission of power over the network is subject to a complex series of physical interactions.	 What happens in one part of the system affects conditions elsewhere in the system. Ancillary services are necessary to ensure system reliability and security.
Electricity travels at the speed of light.	 Each second, output has to be precisely matched to use. Electricity being generated at any given time equals actual demand and transmission losses.
	Sally Hunt: Making Competition Work in Electricity (2002)

Power System

Industry Structure

Mindanao Problem

Generation Capacity

- Insufficient generation and reserve capacity during peak demand periods
- Aging and unreliable power plants
- No incentive for embedded generation facilities and voluntary load participants
- Government is not allowed to enter into new power supply obligation under EPIRA

Objective

Potential Additional Supply

	En allita a	2012 Dependable	Evel Even
Distribution Utility	Facility	Capacity (IVIVV)	Fuel Type
CEPALCO	MINERGY 1 &2	45	Diesel
	FGBPC	1.6	Hydro
	BUBUNAWAN	0 (4.9)	Hydro
	SOLAR PV	1	Solar
	CABULIG	8	Hydro
DLPC	SIBULAN	36	Hydro
	TALOMO	4.5	Hydro
	BAJADA DPP	48	Diesel
CLPC	COTABATO LIGHT	9.9	Diesel
FIBECO	Crystal Sugar	7	Biomass
Total Embedded		161	
Various	Self-Gen. within DU (> 1 MW)	103.42	ILD
	TOTAL	264.42	

It is projected that about 150 MW of the above capacities will be traded in the IMEM.

How do we tap these potential resources?

Principles

Day-Ahead Market

- Trade quantities in excess of Contracts
- Energy only, no ancillary services

Real time adjustment

• Dispatch variations are based on a merit order table

Market Price with Offer Cap

- Single price market
- Offer cap

Principles

Additional Participants

- Voluntary Load Curtailment
- Embedded Generation

Centralized Scheduling

- Contract Quantities
- Market Quantities

Current Process

Market Design Overview

Market

Outline

Introduction

Governance and Regulatory Framework

Registration and Membership

Market Operations

Settlement and Metering

Disputes and Penalties

Introduction

Governance and Regulatory Framework

Registration and Membership

Market Operations

Settlement and Metering

Disputes and Penalties

Market Governance

IMEM Governance Committee

- Composed of independent members of the Philippine Electric Industry, the IMEM Operator and the DOE
- Members are appointed by the DOE
- Responsible for monitoring the activities of the IMEM
- Refers suspected incidences of breaches of the IMEM Rules to the Enforcement and Compliance Officer
- Imposes financial and/or non-financial penalties for breaches of the IMEM Rules

Enforcement and Compliance Officer

• Investigates breaches of the IMEM Rules

Introduction

Governance and Regulatory Framework

Registration and Membership

Market Operations

Settlement and Metering

Disputes and Penalties

Outline

Introduction

Governance and Regulatory Framework

Registration and Membership

Market Operations

Settlement and Metering

Disputes and Penalties

Registration and Membership Overview

Who will be the participants in the IMEM?

What roles will entities perform in the IMEM?

Categories of Membership

IMEM Resources

 Grid and Embedded Generators

 Grid and Embedded Load Curtailment Resources

Distribution Utilities Grid-

Connected End Users

- Mindanao
 System
 Operator
- Network
 Service
 Providers
- Metering Services Providers

Electric Power Industry Participants

Registration

Entity	IMEM Resource	IMEM Customer	IMEM MSP	IMEM NSP		
Generator (Grid-Connected)	М					
Generator (Embedded)	М					
End-User (Grid-Connected)	v	М				
End-User (Embedded)	v					
Distribution Utility		М	E	E		
Grid MSP			М			
Grid NSP				М		
Legend: M – Mandatory V – Voluntary E – Mandatory if entity has an embedded facility registered in the IMEM						

Qualifications

Grid and Embedded Generators

- Rated capacity of at least 1MW
- Capable of synchronous operation
- Can be classified as either dispatchable or nondispatchable

Voluntary Load Curtailment

- Daily average peak demand for the last 12 months of at least 1 MW
- Capable of curtailing its demand within 30 minutes from receipt of dispatch instructions

Outline

Introduction

Governance and Regulatory Framework

Registration and Membership

Market Operations

Settlement and Metering

Disputes and Penalties

Outline

Introduction

Governance and Regulatory Framework

Registration and Membership

Market Operations

Settlement and Metering

Disputes and Penalties

Market Operations Overview

How will the IMEM allow the utilization of all capacities during hours with deficiency?

How will the price be determined in the IMEM?

How will Generators and Load Curtailment Resources be dispatched with the IMEM?

How will the IMEM allow the utilization of all capacities during hours with deficiency?

If there is no deficiency in the Grid then the IMEM will not perform transactions.

IMEM Trading Intervals IMEM Trading Intervals 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 4 1 Legend: **Contracted Capacity** — System Load Demand

How will the price be determined in the IMEM?

Centralized Schedule for the Mindanao Grid

IMEM Process

What is the current day-ahead scheduling process for Mindanao?

How is the current scheduling process different from the IMEM?

Sub-Process	Current Protocol	IMEM Protocol
Demand Forecasting	MSO prepares the day-ahead demand forecast based on historical data	DUs submit the day ahead demand forecast to MSO to determine the Mindanao day-ahead demand forecast
NPC Capacity Nomination and Allocation	Resources submit to MSO their contract allocations for finalization through SCD	Resources submit to MSO their contract allocations for finalization through SCD
Deficiency/ surplus Determination	MSO determines deficiency/ surplus of DUs	SO determines deficiency/ surplus of DUs
Nominations for additional supply	DUs nominate to APC-TMI for additional supply if contract exists	DUs submit their day-ahead additional supply need to the IMEM Operator
Price Determination for additional supply	Based on PSA	Based on day-ahead deficiency and supply offers

How will the IMEM obtain the information required to prepare the Day-Ahead Schedule?

Merit Order Table for Real-Time Balancing

Load Curtailment Resource 10 MW @ Php 10,000/MWh

Embedded Diesel Plant

15 MW @ Php 8,000/MWh

Market Operations Recap

In the IMEM, untapped available resources will be centrally scheduled to meet the supply shortfall providing market-driven compensation for the scheduled capacities.

Pricing in the IMEM will be governed by market forces based on the available supply and submitted demand of DUs that is net of contracts.

The Generators and Load Curtailment Resources will be dispatched based on the merit order table determined day-ahead with premium provisions for In-Day Dispatch Service and dispatch variations.

Outline

Introduction

Governance and Regulatory Framework

Registration and Membership

Market Operations

Settlement and Metering

Disputes and Penalties

Outline

Introduction

Governance and Regulatory Framework

Registration and Membership

Market Operations

Settlement and Metering

Disputes and Penalties

Settlement Overview

How will IMEM Resources be paid?

How will payments to IMEM Resources be recovered from the IMEM Customers?

What are the relevant dates in the billing and settlement process?

Settlement Overview

IMEM Resources

IMEM Customers

Settlement Overview Example

IMEM Resource Settlement

Customer Settlement

*Allocation of In-Day Dispatch Service Payments to IMEM Trading Participants is yet to be finalized

Example:

Example:

10 MW @ Php 20,000/MWh

DU 1 Expected Demand: 30 MW Contracted Capacity: 20 MW **Buying from the IMEM: 10 MW**

DU 2 Expected Demand: 50 MW Contracted Capacity: 35 MW **Buying from the IMEM: 15 MW**

DU 3 Expected Demand: 40 MW

Contracted Capacity: 15 MW

Buying from the IMEM: 25 MW

Scenario: Ideal Case

IMEM Demand = 50 MW IMEM Day-Ahead Price = PhP 10,000 / MWh Actual IMEM Demand = 50 MW

Resource	Energy	Variation Adjustment	In-Day Dispatch
R1	200,000	0	0
R2	200,000	0	0
R3	100,000	0	0
LCR1	0	0	0
Total	500,000	0	0

IMEM Customer Price = 500,000 / 50 IMEM Customer Price = PhP 10,000 / MWh

Customer	Energy	Variation Adjustment	In-Day Dispatch
C1	10 x 10,000	0	0
C2	15 x 10,000	0	0
C3	25 x 10,000	0	0
Total	500,000	0	0

Scenario: C3 Consumes More

IMEM Demand = 50 MW IMEM Day-Ahead Price = PhP 10,000 / MWh Actual IMEM Demand = 60 MW

Resource	Energy	Variation Adjustment	In-Day Dispatch
R1	200,000	0	0
R2	200,000	0	0
R3	200,000	0	10,000
LCR1	0	0	0
Total	600,000	0	10,000

IMEM Customer Price = 600,000 / 60 IMEM Customer Price = PhP 10,000 / MWh

Customer	Energy	Variation Adjustment	In-Day Dispatch
C1	10 x 10,000	0	0
C2	15 x 10,000	0	0
C3	35 x 10,000	0	Causer
Total	600,000	0	10,000

Scenario: C3 Consumes Less

Other Scenarios

Scenario	Dispatch Adjustment	Settlement Impact
IMEM Demand Forecast is higher than Actual	Increase supply of IMEM Resources	Customer that contributed to the
IMEM Demand Forecast is lower than Actual	Reduce supply of IMEM Resources	forecast deviation pays for the premium of re- dispatched IMEM Resources
Forced Outage	Increase supply of IMEM Resources	Facility on forced outage pays for the premium of re-dispatched IMEM Resources
IMEM Generator produces more than instructed	Reduce supply of IMEM Resources	IMEM Generator that produced more will pay for the premium of re- dispatched IMEM Resources

Example:

Selling (Day-Ahead)

Selling (Actual, Grid-Connected)

5 MW

Money Flow (Grid-Connected)

Pay for 5 MW

Money Flow (Embedded) Pay for 5MW Pay for 5 MW **Pay for Pay for** 2 MW **2 MW** IMEM

IMEM Load Curtailment Resource vs Interruptible Load Program

Feature	IMEM LCR	ILP
Potential Buyer	Anyone connected to the Mindanao Grid	Host DU Only
Design	End-user submits IMEM Offer to curtail or deload. If price clears in the IMEM, End-user will be dispatched on its offer price.	DU and a Participating Customer agree on either partial or full deloading/disconnection for a period of time as determined by the DU.
Payment	Based on the IMEM Offer of the End-User	Based on the Generation Cost of Fuel, fixed Fuel Consumption Rate and DU Average Rate

Billing and Settlement Process

Billing Period: 26th of the Month to 25th of the Next Month

Payment Guidelines

Mode of Payment

- In Cleared Funds
- Through an electronic funds transfer facility provided by the IMEM Operator

Unpaid Amounts

- Will be applied a default interest (IMEM Rules Clause 5.4.6.5)
- Payment default is a ground for suspension

Prudential Security Requirements

Purpose

- To ensure the effective operation of the IMEM by providing a level of comfort that IMEM Trading Participants will meet their obligations to make payments
- The IMEM Operator may immediately draw on the security without need of prior consent

Amount and Form

- Must always be below the Maximum Exposure of the IMEM Trading Participant
- In Cash

Settlement Recap

IMEM Resources will be settled on three (3) areas: Energy, In-Day Dispatch Service, and Variation Adjustment.

Energy and Variation Adjustments will be recovered across all IMEM Customers. Recovery of In-Day Dispatch Service Payments is yet to be finalized.

The billing period is from the 26th of a month to the 25th of the next month with the payment for that billing period on the 25th of the following month after the billing period.

Metering Overview

Basis for Settlement

• Metered Quantities (MSP)

- Contract Quantities (IMEM Resources)
- Scheduled Targets (IMEM Day-Ahead Schedule)
- Dispatch Targets (Mindanao SO)

IMEM Metering Services Providers

Metered Quantities

Metering Services Provider

 Responsible for collecting and validating Metered Quantity

Basic Meter Requirements

- Metered Quantity for each IMEM Interval
- Metering Data can be stored for collection at the end of the billing period

Outline

Introduction

Governance and Regulatory Framework

Registration and Membership

Market Operations

Settlement and Metering

Disputes and Penalties

Introduction

Governance and Regulatory Framework

Registration and Membership

Market Operations

Settlement and Metering

Disputes and Penalties

Disputes

Disputes

- Must be lodged within twelve (12) calendar months of the date of issuance of the relevant Final Settlement Statement (IMEM Rules Clause 5.4.3.2)
- Disputed amounts must be paid on the relevant deadline (IMEM Rules Clause 5.4.4.4)

Breaches

Failure of a generator to offer all available capacity

Failure to comply with obligations under the IMEM Rules or Manuals

Should not be due to payment default or failure to follow dispatch schedule

Suspension and Deregistration

Introduction

Governance and Regulatory Framework

Registration and Membership

Market Operations

Settlement and Metering

Disputes and Penalties

Important Dates

End of Presentation